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Data-driven solutions
In an age with more climate data than ever before, how can we 
harness it to drive genuinely evidence-based climate action? 

By Auroop R. Ganguly, Evan Kodra, Udit 
Bhatia, Mary Elizabeth Warner, Kate Duffy, 
Arindam Banerjee and Sangram Ganguly

The fourth and fifth assessment reports 
by the Intergovernmental Panel 
on Climate Change have declared 

global warming to be “unequivocal” and 
anthropogenic drivers to be “extremely 
likely” as the dominant cause. These 
conclusions, expressed in cautious scientific 
language governed by strict criteria, need 
to serve as a clarion call for action – from 
urban communities to world bodies – to 
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 Hurricane Florence approaching the east coast of the 
USA, as viewed from the International Space Station. 
Although climate is a ‘big data’ science, only a small 
amount of the data has been systematically analysed

impacts and vulnerability on their respective 
societies and institutions – and on the 
challenges in adaptation. 

Impacted sectors include natural resources 
(such as food, energy, water, ecosystems), 
hazards and humanitarian aid (for example, 
critical infrastructures resilience), as well as 
population growth and movement (such as 
environmental refugees). 

However, while predictive insights from 
climate models and data are usually more 
credible at aggregate scales in space and time, 
climate action may be better suited at the 
local scale such as within urban communities. 
Urbanisation contributes significantly to 
emissions and land-use change, and hence 
to climate change, while urban areas are 
significantly impacted by climate change. 

Communities in urban, peri-urban or rural 
regions need to understand, adapt to and 
mitigate risk elements. These include global-
scale and locally exacerbated hazards (such 
as global warming and urban heatwaves), 

vulnerabilities of infrastructures and lifelines 
(including natural-built and grey–green 
infrastructures), as well as exposure of 
economic assets, ecosystem services and 
human populations. 

Data-driven understanding and predictive 
insights can improve risk-informed 
adaptation and mitigation in three ways: (i) 
through improved understanding of earth 

prepare for what is likely, and to prevent the 
worst from happening.

Climate adaptation and mitigation 
have been respectively called “managing 
the unavoidable” and “avoiding the 
unmanageable”. While individuals, 
communities and nations may understand 
that there are inherent costs to both 
climate action and inaction, developing a 
comprehensive, evidence-based, scientifically 
credible and risk-informed action framework 
is not straightforward. 

National and global climate mitigation 
policies include investments in renewable 
energy, carbon capture and storage solutions, 
divestments in fossil fuels, and environmental 
and land-use regulations. The will of nations 
to act may depend on perceptions of climate 

 Figure 1. Here we show an example of risk assessment 
by our startup, risQ, which blends diverse concepts and 
disparate data sources. Coastal floods are modelled for 
multiple return periods under sea-level rise. Inundation 
depths and extents are intersected with geospatial 
layers, including property value and industrial workforce 
concentrations, over a municipality. This allows for 
estimating the municipal tax revenue at risk from climate 
change. Analysis on comparative tax dollars at risk under 
climate change could help bond investors and financial 
rating agencies better quantify the true municipal and 
state credit risk. This map exemplifies modelled 10-year 
tidal flood depth and extent (‘hazard map’) under current 
sea-level conditions in Savannah, GA, overlaid with a 
workforce density index (‘value-at-risk map’) to help 
stakeholders estimate industrial output risk

Figure 1. Blended hazard and value-at-risk map of Savannah, GA, USA
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systems science and engineering, translating 
to the probabilities and attributes of stresses 
and shocks; (ii) through risk frameworks, 
including risk assessments, which consider 
threat, vulnerability and exposure, emergency 
management (including preparedness and 
recovery), as well as time-phased and flexible 
adaptation strategies; and (iii) mitigation at 
multiple scales, from global and national to 
urban and community. 

Climate model simulations and remotely 
sensed observations already exceed petabyte 
scales (one petabyte equals 1,000 terabytes) 
and are expected to reach a few hundred 
petabytes within the next couple of decades. 
But even though climate is now a ‘big  
data’ science, only a small fraction of the 
available data has been systematically 
analysed. Furthermore, even as ‘big models’ 
are increasing in space-time resolutions  
and complexity, this is not necessarily 
leading to more certainty in stakeholder-
relevant insights.

Machine learning
So, a group of climate modellers have 
resorted to machine learning (ML) – a 

subfield of artificial intelligence – to estimate 
parameters for high-resolution atmospheric 
processes such as convection. Others have 
explored ML-based post-processing of 
model simulations, often guided by physics 
to obtain finer-scale projections. Beyond 
atmospheric science, terrestrial ecology has 
benefited from ML through the creation of 
a global plant attribute database, which in 
turn used an advanced data-driven parameter 
estimation method within numerical models. 

Despite these efforts, our lack of 
understanding of complex climate processes 
and feedback, as well as sources of irreducible 
uncertainty, may persist. 

First, greenhouse gas emissions and land-
use change scenarios that drive the models 
are not precise predictions with probabilities, 
but are what-if scenarios. 

Second, gaps in our knowledge of the 
climate system may not be easily plugged. 
Uncertainties result from variabilities across 
model simulations as well as their lack of 
correspondence (when models are hindcast 
into the past) with observations. 

Third, inherent variability exists in the 
climate system, including extreme sensitivity 

to initial conditions, which contributes to the 
irreducible component of uncertainty.

These three components contribute to 
the overall uncertainty. In the crucial 0–30 
year near term, the projected climate change 
signal may be within the bounds of this 
overall uncertainty, which may in turn be 
dominated by the inherent variability.       

Climate challenges go beyond ‘big’ models 
and big data. Indeed, climate science is also 
dominated by what may be viewed as ‘small 
data’ challenges. Historical records from the 
data-poor eras of earth science are sparse, 

 Figure 2. In 2012, Hurricane Sandy inundated New 
York City, causing billions of dollars in damage and 
costing the Metropolitan Transportation Authority 
(MTA) an estimated $124 million in lost revenue. Using 
a system-recovery modelling approach, the MTA could 
have hypothetically saved an estimated $56 million 
dollars and restored service in less time by strategically 
prioritising station recovery. Left top: percentage of 
service restored is shown step-by-step as stations are 
recovered in sequence. The yellow line is based on the 
actual sequence of recovery, and the blue is driven by 
the recovery model. Left bottom: same but for estimated 
MTA revenue, as inferred using historical MTA data. 
Middle and right: a snapshot of the modeled MTA 
recovery mid-process, for the model and the actual 
historical recovery, respectively

Figure 2. Recovery model for the New York City metro after Hurricane Sandy
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making historical reconstructions difficult 
to validate. Climate signals exhibit temporal 
fluctuations ranging from sub-seasonal to 
multi-decadal and even longer time scales 
(low-frequency variability). 

The lack of historical data makes it 
challenging to understand changes or 
delineate signals from longer-term variations, 
although reconstructions based on models, 
instrumented records (even if relatively 
sparse), and proxy data (such as tree rings, 
fossils and ice cores) help to partially address 
aspects of the information gap. 

Furthermore, climate data challenges are 
made worse by complex dependence. Tobler’s 
first law of geography states that “everything 
is related to everything else, but near things 
are more related than distant things”. While 
climate data exhibit this property in space 
and in time, long-range spatial dependence 
and persistence in time are also common.   

Finally, climate change is not just a 
matter of mean change (for example, global 
warming) but also about changes in the 
patterns of extremes such as heatwaves, 
cold snaps, heavy rain, droughts, floods 
and hurricanes. Weather extremes turn to 
catastrophic disasters when hazards (e.g., a 
hurricane) are aligned with infrastructural 
(e.g., an inadequately designed dam or 
levee) and societal (e.g., economic disparity) 
vulnerability, exposure of people and assets 
(e.g., businesses and natural resources), as 
well as lack of emergency management plans. 
The relative rarity of such extremes adds to 

the ‘small data’ challenge and brings to the 
fore the need to manage, assimilate, analyse 
and interpret heterogeneous information.  

Nonetheless, extracting predictive insights 
about the statistics of change and extremes 
is possible based on specialised data-driven 
methods such as extreme value theory, 
network science and signal processing. 
Thus, our research has examined complex 
dependence patterns, low-frequency 
variability in climate (including for extremes) 
and developed predictive insights. We have 
studied heatwaves and cold snaps, heavy 
precipitation, high winds, droughts and 
urban climate extremes. 

Our work on droughts and heavy 
precipitation has examined long-memory 
processes and teleconnections. We have 
discussed deep uncertainty (i.e., where 
probabilities cannot be easily assigned) 
and non-stationarity (i.e., significant 
and fundamental change) in climate and 
hydrology, as well as in climate adaptation 
and resilient engineering, and the possibility 
of blending physics and data sciences to 
address these challenges. Figure 1 illustrates 
how simulations and observations from 
earth system science combined with 
ancillary information may help generate 
predictive insights in climate and develop risk 
assessments. 

Attribution studies, where change 
patterns are related to possible causes, are 
typically based on observations and model 
simulations. This is one area where we 

believe the climate science community can 
benefit significantly by interacting with a 
wider group of interdisciplinary scientists. 

Stakeholders such as the US Department 
of Defense indicate that climate change is a 
threat multiplier across many sectors, and 
hence adaptation and mitigation are urgent 
and necessary. Data challenges in adaptation 
and mitigation sectors are diverse and 
disparate – ranging from big data to small 
data, information gaps and confidentiality 
issues – and are exacerbated by gaps in 
understanding processes and the possibility 
of cascading failures. 

Data-driven methods, data-informed, 
process-based approaches and physics-
informed, data-science methods have all 
been found to be useful. Robust decisions 
and flexible-planning pathways have been 
suggested. We have examined coastal 
processes, water-energy nexus, transportation 
networks, public health and urban heatwaves, 
and regulatory principles. Figure 2, for 
example, shows how recovery strategies 
designed in anticipation of weather extremes 
can help save lives and money.

Future work may need to creatively 
leverage data from the public domains or 
from well-crafted simulations and testbeds. 
It may also incorporate confidential data 
that could still be used either through 
anonymisation or by following privacy 
regulations. The state of the art in critical 
infrastructures resilience offers specific 
examples. 

Finally, the importance of economic 
incentives to overcome hurdles to best 
practice or to engineering innovation, 
as well as to policy myopia, cannot be 
overemphasised. These in turn may require 
analysis of financial, demographic and 
socio-economic data. Figure 3 suggests 
how a vicious cycle of maladaptation may 
be transformed to a virtuous cycle through 
improved incentives and innovations. 

Note: AR Ganguly, Bhatia, Warner and Duffy are at 
Sustainability and Data Sciences Laboratory (SDS 
Lab) of Northeastern University (NU) in Boston, MA, 
USA; Kodra is at the startup risQ (spinout of the SDS 
Lab) in Cambridge, MA; Banerjee is at the University 
of Minnesota (computer science) in Twin Cities, MN; 
S Ganguly is with the NASA Ames Research Center at 
Moffett Field, CA. An accompanying list of references is 
available online at www.climate2020.org.uk   

Figure 3. Breaking the maladaptation cycle
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